翻訳と辞書
Words near each other
・ Skol, Vikings
・ Skolankowska Wola
・ Skold
・ Skold vs. KMFDM
・ Skole
・ Skole Beskids
・ Skole Raion
・ Skolebrød
・ Skolelinux
・ Skolem arithmetic
・ Skolem arithmetic (disambiguation)
・ Skolem normal form
・ Skolem problem
・ Skolem's paradox
・ Skolem–Mahler–Lech theorem
Skolem–Noether theorem
・ Skolfield-Whittier House
・ Skolian Empire
・ Skolimowo
・ Skolin
・ Skolion
・ Skolithos
・ Skolity
・ Skolkovo
・ Skolkovo (rural locality)
・ Skolkovo Foundation
・ Skolkovo innovation center
・ Skolkovo Institute of Science and Technology
・ Skolkovo Moscow School of Management
・ Skolkovo, Moscow Oblast


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Skolem–Noether theorem : ウィキペディア英語版
Skolem–Noether theorem
In ring theory, a branch of mathematics, the Skolem–Noether theorem characterizes the automorphisms of simple rings. It is a fundamental result in the theory of central simple algebras.
The theorem was first published by Thoralf Skolem in 1927 in his paper ''Zur Theorie der assoziativen Zahlensysteme'' (German: ''On the theory of associative number systems'') and later rediscovered by Emmy Noether.
== Statement ==
In a general formulation, let ''A'' and ''B'' be simple unitary rings, and let ''k'' be the centre of ''B''. Notice that ''k'' is a field since given ''x'' nonzero in ''k'', the simplicity of ''B'' implies that the nonzero two-sided ideal ''BxB = (x)'' is the whole of ''B'', and hence that ''x'' is a unit. Suppose further that the dimension of ''B'' over ''k'' is finite, i.e. that ''B'' is a central simple algebra of finite dimension. Then given ''k''-algebra homomorphisms
:''f'', ''g'' : ''A'' → ''B'',
there exists a unit ''b'' in ''B'' such that for all ''a'' in ''A''〔Lorenz (2008) p.173〕
:''g''(''a'') = ''b'' · ''f''(''a'') · ''b''−1.
In particular, every automorphism of a central simple ''k''-algebra is an inner automorphism.〔Gille & Szamuely (2006) p.40〕〔Lorenz (2008) p.174〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Skolem–Noether theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.